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We introduce the Britto-Cachazo-Feng-Witten (BCFW) recursion relation [1, 2] for tree ampli-

tudes. This is a milestone of scattering amplitude development.

I. THREE-POINT GLUON TREE AMPLITUDE

Three-point gluon amplitude is a building block for BCFW recursion relation.

We consider the three-point massless kinematics. It is clear that

pi · pj = 0,∀1 ≤ i, j ≤ 3 . (1)

or,

〈12〉[12] = 0, 〈23〉[23] = 0, 〈13〉[13] = 0. (2)

For real kinematics, 〈ij〉 is the complex conjugate of [ij] and all spinor products are zero. It is

impossible to study the amplitude in this case. However, we consider complex kinematics and the

amplitude can be discussed.

We look at these kinematic conditions in details:

• 〈12〉 = 0. In this case, we set λ2 = c λ1 where c is a complex number. As matrices,

λ1λ̃1 + cλ1λ̃2 = −λ3λ̃3 . (3)

It implies that 〈13〉 = 0 and 〈23〉 = 0.

• [12] = 0. In this case, we have [23] = [13] = 0.

Then it is straightforward to compute the partial amplitudes from Feynman rules. In the case

when [12] = [23] = [13] = 0, for the MHV amplitude, we can use

ε−1 =
√

2
1k̃

[1k]
, ε−2 =

√
2

2k̃

[2k]
, ε−3 =

√
2

13̃

〈13〉
, (4)

where pk is an arbitrary null vector. Then by straightforward computation, we find that the partial

amplitude is

A(1−, 2−, 3+) = i
〈12〉4

〈12〉〈23〉〈31〉
. (5)



2

Here we used the fact that 11̃ + 22̃ + 33̃ = 0 to get 〈12〉[1k] + 〈32〉[3k] = 0.

Similarly, in the case when 〈12〉 = 〈23〉 = 〈13〉 = 0, for the MHV amplitude,

A(1+, 2+, 3−) = −i [12]4

[12][23][31]
. (6)

II. BCFW RELATION

For the n-point massless kinematics, we consider the BCFW shift,

pk = λkλ̃k → pk(z) ≡ λk(λ̃k − zλ̃n) (7)

pn = λnλ̃n → pn(z) ≡ (λn + zλk)λ̃n (8)

and keep all the other momentum invariant. It is clear that

p1 + . . .+ pk(z) + . . .+ pn(z) = 0 (9)

and pk(z)
2 = pk(z)

2 = 0. So with an arbitrary value of z, we still have the n-point massless

kinematics.

It is natural to consider the n-gluon tree amplitude A(z) for the BCFW-shifted amplitude. Note

that, by shifting pk and pn, we also shift the corresponding polarization vectors.

Because of the Feynman rules, A(z) must be a rational function of z defined on the Riemann

surface. Let {z1, . . . , zm} be the pole locus of A(z). Note that 0 6∈ {z1, . . . , zm}. Consider the

meromorphic differential form ω = A(z)
z dz. On the Riemann Sphere, ω may be divergent at

{0, z1, . . . , zm,∞} (10)

Global residue theorem ensures that,

A+

( m∑
i=1

Resz→zi
A(z)

z
dz

)
+ Resz→∞

A(z)

z
dz = 0 , (11)

where A(0) = A is the original gluon tree amplitude.

The key ingredient of BCFW shift is that for Yang-Mills theory, Gravity theory, super-Yang-

Mills theory and supergravity theory, A(z) has surprisingly simply behavior when z → ∞. If the

k-th gluon and n-th gluon have the helicities (+,+), (−,−) and (−,+),

A(z) ∼ 1/z, z →∞ (12)

In these cases, the residue of ω vanishes at infinity. That implies,

A = −
m∑
i=1

Resz→zi
A(z)

z
dz . (13)
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We have a close look at the z → zi. If A(z) is divergent at z → zi, then the divergence must

come from a propagator which depends on z. Let the divergent propagator be −iηµν/p(z)2 and

p(zi)
2 = 0. Note that p(zi) flow separates the color-ordered diagrams to two sub-diagrams. Call

the sub-diagram with pk as the left one, and the other sub-diagram with pn as the right. We

assume that p(zi) flow is from the left to right.

For the null vector p(zi), we can consider it as an on-shell gluon and define its polarization

vectors. ε+(p(zi)) and ε−(p(zi)). Recall that

εµ+(p(zi))ε
ν
−(p(zi)) + εµ−(p(zi))ε

ν
+(p(zi)) = −ηµν +

p(zi)
µqν + p(zi)

νqµ

p(zi) · q
. (14)

The left part of the diagram is ML,i,µ and the right part of the diagram is MR,i,µ. ML,i,µ, contracted

with εµ+(p(zi)), becomes a tree amplitude AL,i,+. MR,i,µ, contracted with εµ−(p(zi)) = −εµ−(−p(zi)),

becomes a tree amplitude AR,i,−. Because of the Ward identity, p(zi)µ contractions vanish. There-

fore,

Res|z→zi
A(z)

z
= −i

∑
h=±

AL,i,hAR,i,−h
zi

lim
z→zi

z − zi
p(z)2

(15)

Let the sum of “original” external momentum of the left diagram to be PL,i. p(zi)
2 = P 2

L,i −

2ziPL,i · (kñ) = 0.

Res|z→zi
A(z)

z
= i

∑
h=±

AL,i,hAR,i,−h
P 2
L,i

(16)

and

A = −i
∑
i

∑
h=±

AL,i,hAR,i,−h
P 2
L,i

. (17)

This is the BCFW recursion relation for gluon tree amplitudes. Note that AL,i,h, AR,i,−h are

both on-shell amplitudes. This is a great advantage since we do not need to worry about off-shell

objects.

Gluon tree amplitude with the other helicity (+,−) does not vanish at infinity. For this config-

uration, we can cyclically permute the external legs and then use BCFW recursion relation.
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III. APPLICATION

A. Four-point MHV

The goal is to calculate A(1−2−3+4+). We consider the BCFW shift

p1 = λ1λ̃1 → p1(z) ≡ λ1(λ̃1 − zλ̃4) (18)

p4 = λ4λ̃4 → p4(z) ≡ (λ4 − zλ1)λ̃4 (19)

With a simple graphic analysis, we see that the only way the amplitude can diverge is that,

P 2(z) = (p1 + p2 − z14̃)2 = s12 − 〈12〉[24]z → 0 (20)

In the BCFW language, we call this pole locus z1 and P 2
L,1 = s12. z1 = −[12]/[24]. At this pole,

p1(z1) = 1(1̃ +
[12]

[24]
4̃) = 1(

[14]

[24]
2̃) (21)

p4(z1) = (4− [12]

[24]
1)4̃ = (

〈14〉
〈13〉

3)4̃ (22)

P (z1) = −p1(z1)− p2 = −(
[14]

[24]
1 + 2)2̃ = −〈12〉

〈13〉
32̃ (23)

where we used the Schouten identity and momentum conservation 〈13〉[14] + 〈23〉[24] = 0. Then

we make a kinematics table for the left diagram,

p1(z1) 1 [14]
[24] 2̃

p2 2 2̃

P (z1) − 〈12〉〈13〉3 2̃

(24)

and for the right diagram,

p3 3 3̃

p4(z1)
〈14〉
〈13〉3 4̃

−P (z1)
〈12〉
〈13〉3 2̃

(25)

Note that for p1(z1) and p4(z1), we need to keep the spinor normalization: when z → 0,

λ1(z)→ λ1. We also have to carefully take the spinor normalization for P (z1) and −P (z1).

Left diagram corresponds to a (−−+) MHV amplitude and the right corresponds to a (+ +−)

MHV amplitude. By the BCFW recursion,

A(1−2−3+4+) =
−i
s12

〈12〉3
〈12〉2
〈13〉2 〈23〉〈31〉

[34]3

[42][23]

= i
[34]3

[12][23][41]
= i

〈12〉3

〈23〉〈34〉〈41〉
(26)
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B. n-point MHV amplitude

With BCFW recursion relation, it is straight forward to prove the n-point MHV amplitude with

Parke-Taylor formula. However, historically, Parke-Taylor formula was proved by Berends-Giele

recursion relations.

Without loss of generality, we consider the n-point tree amplitude A(1−, . . . i−, . . . n+), i < n−1.

We choose the BCFW shift,

p1(z) = λ1(λ̃1 − zλ̃n)

pn(z) = (λn + zλ1)λ̃n (27)

First we assume that p1 is placed on the “left” and pn is placed on the “right”. Consider two

cases,

• pi is placed on the “right”. By graph analysis, the only way to get nontrivial contribution

is consider the left amplitude is 3-point and the right one is (n − 1)-point. Then the left

amplitude should be MHV while the right amplitude should be MHV amplitude. However by

a detailed analysis, we find the left graph has all right handed spinor in parallel. Therefore

the left amplitude is zero, and does not contribute to the amplitude.

• pi is placed on the “left”. By graph analysis, the only way to get nontrivial contribution

is consider the left amplitude is (n − 2)-point and the right one is 3-point. Then the left

amplitude should be MHV while the right amplitude should be MHV amplitude. The bridge,

P (z) = (n+ z1)ñ (28)

Assume that at z → z1 P (z)2 = 0. Consider the right amplitude with pn, pn−1, P (z). Its

kinematics table is,

pn−1 λn−1 λ̃n−1

pn(z1) xλn−1 λ̃n

−P (z) λn−1 −λ̃n−1 − xλ̃n

(29)

It is easy to determine that x = 〈1n〉/〈1, n− 1〉. This MHV amplitude is

AR = −i [n− 1, n]

x
. (30)
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The right kinematic table is

P (z) −λn−1 −λ̃n−1 − xλ̃n

p1(z) 1 1̃− z1λ̃n

. . . . . . . . .

(31)

This MHV amplitude is

AL = i
〈1i〉4

〈12〉〈23〉 . . . (−1)〈n− 2, n− 1〉(−1)〈n− 1, 1〉
(32)

Combine them together, we proved the MHV amplitude formula for n-point,

A =
−i

sn,n−1
ALAR = i

〈1i〉4

〈12〉〈23〉 . . . 〈n1〉
. (33)

C. NMHV amplitude

The amplitudes A(1+, . . . i−, . . . j−, . . . k−, . . . n+) with n ≥ 6 are called NMHV amplitude. The

tree-level NMHV amplitude is much more complicated than the corresponding tree-level MHV

amplitude.

We show one example of NMHV amplitude, A(1−2−3−4+5+6+). Using BCFW, we again con-

sider the shift

p1(z) = 1(1̃− z6̃) (34)

p6(z) = (6 + z1)6̃ (35)

• The first BCFW bridge is for the separation {p1(z)−, 2−, 3−, 4+, P (z)+} and

{−P (z)−, 5+, p6(z)
+}. The right kinematics table is,

5 5 5̃

p6(z) x15 6̃

−P (z) (−1)5 5 + x16

(36)

It is easy to see that x1 = 〈16〉/〈15〉 and for the case the solution z1 = 〈56〉/〈15〉. The left

kinematics table is,

p1(z) 1 1̃− z16̃

2 2 2̃

3 3 3̃

4 4 4̃

P (z) 5 5 + x16

(37)
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So the first BCFW term is

A1 =
−i
s56

AL(p1(z)
−, 2−, 3−, 4+, P (z)+)AR(−P (z)−, 5+, p6(z)

+)

=
−i(〈1, 5〉[4, 5] + 〈1, 6〉[4, 6])3

〈1, 6〉〈5, 6〉 [2, 3][3, 4](〈1, 5〉[1, 2] + 〈5, 6〉[2, 6])(s15 + s16 + s56)
(38)

• The second BCFW bridge is for the separation {p1(z)−, 2−, P (z)+} and

{3−, 4+, 5+, p6(z)+,−P (z)−}. The left kinematics table is,

p1(z) 1 x22̃

2 2 2̃

P (z) (−1)(x21 + 2) 2̃

(39)

It is easy to see that x2 = [16]/[26] and for the case the solution z2 = −[12]/[26]. The right

kinematics table is,

3 3 3̃

4 4 4̃

5 5 5̃

6 6 + z21 6̃

P (z) (x21 + 2) 2̃

(40)

So the first BCFW term is

A2 =
−i
s56

AL(p1(z)
−, 2−, P (z)+)AR(3−, 4+, 5+, p6(z)

+,−P (z)−)

=
−i(〈1, 3〉[1, 6] + 〈2, 3〉[2, 6])3

〈3, 4〉〈4, 5〉[1, 2] [1, 6](〈1, 5〉 [1, 2] + 〈5, 6〉[2, 6])(s12 + s16 + s26)
(41)

The final result is that

A(1−2−3−4+5+6+) = A1 +A2 . (42)

It is difficult to simplify this amplitude further with spinor helicity formalism.
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